If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-29.145=-6(10+x)+15(10+x)-50x^2
We move all terms to the left:
-29.145-(-6(10+x)+15(10+x)-50x^2)=0
We add all the numbers together, and all the variables
-(-6(x+10)+15(x+10)-50x^2)-29.145=0
We calculate terms in parentheses: -(-6(x+10)+15(x+10)-50x^2), so:We get rid of parentheses
-6(x+10)+15(x+10)-50x^2
determiningTheFunctionDomain -50x^2-6(x+10)+15(x+10)
We multiply parentheses
-50x^2-6x+15x-60+150
We add all the numbers together, and all the variables
-50x^2+9x+90
Back to the equation:
-(-50x^2+9x+90)
50x^2-9x-90-29.145=0
We add all the numbers together, and all the variables
50x^2-9x-119.145=0
a = 50; b = -9; c = -119.145;
Δ = b2-4ac
Δ = -92-4·50·(-119.145)
Δ = 23910
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{23910}}{2*50}=\frac{9-\sqrt{23910}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{23910}}{2*50}=\frac{9+\sqrt{23910}}{100} $
| 11-0.3x=2 | | 8x+4-6x=4x+5 | | -29.145=75x+50x^2 | | -¼x-7+2½+2x=4x-7 | | 60-4n=32 | | y+91=180 | | -239.145=75x+50x^2 | | x/3-5x=2x-4 | | (3x+8)+(2x+9)+(2x+9)=180 | | x-103/3=x-10/3 | | -3/6+x=5/6 | | 2x-3x=-55 | | 3/4-2(x-1)/3=x/1212/3 | | 1+r^2=4r^2 | | -43=5f+2 | | -16x^2-12x+54=0 | | 6+8=4x | | 34-5x/6=32-x/2 | | 8x+2(5x-4)=−12 | | 3a−2=11 | | 5x/6-7x/15=1+3x/10 | | 2^(x)=9 | | −12+x=15 | | 11/7g=8 | | 3s+5=-16 | | 4=p+16/9 | | 4+3.8x=1 | | y+105=180 | | 2(3x-3)+5x=-3x+4(5x+3) | | 14-4(6x-3)=-6 | | 5x^2-25x+15=-5 | | 675•2+80x=2310 |